No. of Printed Pages: 4

BCS-042

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

BCS-042: INTRODUCTION TO ALGORITHM DESIGN

Time: 2 Hoursl

[Maximum Marks : 50

Note: Question number 1 is compulsory. Answer any three questions from the rest.

(a) For function defined by:

4

 $f(n) = 5n^3 + 6n^2 + 7n + 8$; show that:

(i)
$$f(n) = O(n^3)$$

(ii)
$$f(n) \neq O(n)$$

- (b) Write an algorithm to search the smallest number in a given array. Also calculate its time complexity.
- (c) Draw all the spanning trees for the following weighted graph: 5

Download all NOTES and PAPERS at Stude

(d) For the given graph, write DFS traversal sequence from the node A: 5

- 2. (a) Sort the following list of elements using Quick sort. Also show intermediate steps of the operation.
 - 29, 6, 27, 8, 6, 2, 45, 90
 - (b) Define optimization problem. Give any two examples of optimization problem with explanation.
- (a) Find the optimal solution to the following fractional Knapsack problem using Greedy
 Technique:
 - (i) No. of object n = 6
 - (ii) Max. weight = 25
 - (iii) Value of each item =

- (iv) Weight of each item =
- $(W_1, W_2, W_3, W_4, W_5, W_6) = (5, 10, 12, 13, 15, 20)$
- (b) Write recurrence relation for binary search algorithm.
- 4. (a) Solve the following recurrence relation: 3 T(n) = 3T(n/2) + n
 - (b) Find minimum cost spanning tree for the following graph using Kruskal's algorithm: 7

5. (a) Find Adjacency Matrix for the following graph: 3

(b) Find the complexity of following code: int P = 100;

Downlead) all NOTES and PAPERS at Stude

For
$$(i = 1; i < n; i++)$$

SUM $[i] = P - 1;$
 $A = P = P - 1;$

Make necessary assumptions required

(c) Describe any two methods to solve recurrence relations.

